Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples.
نویسندگان
چکیده
Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing method of two impinging jets commonly used in reaction injection molding (RIM) of plastics. This method achieves efficient mixing by inducing chaotic flow at relatively low Reynolds numbers (Re =140). We present the first mathematical simulation and microscopic visualization of mixing in such RFQ micromixers, the results of which show that the impinging solutions efficiently mix within the mixing chamber. These tests, along with a practical demonstration in a RFQ setup that involves copper wheels, show this new mixer can in practice provide reaction deadtimes as low as 100 microseconds.
منابع مشابه
Design and Simulation of a Clamped-Clamped Micromechanical Beam AM Frequency Mixer-Filter
In the last decade Micromechanical components for communication applications has been fabricated via IC-compatible MEMS technologies. In fact, its most important impact is not at the component level, but rather at the system level, by offering alternative transceiver architectures that reduce power consumption and enhance performance. In this paper a mixer-filter for AM frequency receiver with ...
متن کاملNumerical and experimental observation of chaotic mixing in microfluidic mixer
Both the chaotic mixers (Fig.1) adopt a two-layer overlapping channels structure, which is very efficient for fluid manipulations such as stretching and folding, splitting and recombination. Even at extremely low Re (~10), chaotic advection can be generated. Both particle tracing simulation (Fig. 2) and experimental results (Fig.3) show that as the fluids are driven through the mixer, striation...
متن کاملNumerical analysis of a rapid magnetic microfluidic mixer.
This paper presents a detailed numerical investigation of the novel active microfluidic mixer proposed by Wen et al. (Electrophoresis 2009, 30, 4179-4186). This mixer uses an electromagnet driven by DC or AC power to induce transient interactive flows between a water-based ferrofluid and DI water. Experimental results clearly demonstrate the mixing mechanism. In the presence of the electromagne...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کاملDesign and Development of Mathematical Model for Static Mixer
A numerical model for simulating Residence Time Distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to improve the understanding of static mixers. The results of this model is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied magnetic resonance
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2011